Submarinos






Submarino, nave diseñada para operar bajo el agua. Cuando son utilizadas para la guerra submarina, estas embarcaciones van equipadas con misiles y torpedos, que constituyen su armamento principal. El submarino moderno es un recinto estanco, cuyo casco está soldado y tiene forma cilíndrica con los extremos convexos. Una cámara interior llamada casco presurizado, diseñado para soportar las inmensas presiones de las grandes profundidades oceánicas, ocupa casi todo el espacio. El resto contiene los tanques de lastre situados en una cámara exterior. Del casco se eleva una estructura llamada torrecilla que, en el caso de un submarino nuclear moderno, contiene los periscopios, el radar, las antenas de radio, la chimenea de ventilación y los timones de inmersión. Mientras el submarino se halla en la superficie, la torrecilla se utiliza como puente de mando. Al sumergirse, éste se transfiere a la sala de control, que se encuentra dentro del casco presurizado, justo bajo la torrecilla.
Para sumergir el submarino se introduce agua en los tanques de lastre hasta que se alcanza la profundidad deseada. La vuelta a la superficie se consigue inyectando aire comprimido dentro de esos tanques para expulsar el agua. En la proa o en la torrecilla y en la popa se encuentran los timones de inmersión, superficies horizontales que proporcionan estabilidad a la nave durante su ascenso o descenso.
Los torpedos de los submarinos militares denominados naves de ataque son disparados desde cañones horizontales situados en la proa. En las llamadas naves de misiles, el arma principal son los misiles balísticos de medio o largo alcance, que se disparan desde cañones verticales situados en el centro del submarino.
PRIMEROS SUBMARINOS
La primera nave submarina desarrollada con éxito fue un barco de remos hecho de madera cubierto de cuero. Fue construido en Inglaterra hacia 1620 por el inventor holandés Cornelis Drebbel. Según las crónicas de la época, este barco transportó a doce remeros y a varios pasajeros en una serie de viajes bajo el río Támesis, de varias horas de duración. Además, Drebbel utilizó tubos de aire mantenidos en la superficie del agua por flotadores, para asegurar el necesario suministro de oxígeno al barco mientras éste se encontraba bajo el agua.
El primer submarino utilizado en una operación militar tenía forma de huevo y sólo transportaba a una persona. Fue llamado La Tortuga e inventado en la década de 1770 por el ingeniero estadounidense David Bushnell. Esta nave era propulsada por dos dispositivos parecidos a tornillos que se hacían funcionar de forma manual: se sumergía cuando una válvula permitía entrar el agua de mar en un tanque de lastre y se elevaba cuando el agua era expulsada por una bomba manual. La nave se mantenía en posición vertical gracias a unos lastres de plomo. Como no tenía ninguna fuente de oxígeno mientras estaba bajo la superficie, sólo podía sumergirse durante media hora. Durante la guerra de la Independencia estadounidense fue usado en un ataque fallido contra un barco británico anclado en el puerto de Nueva York.
En 1800, el inventor estadounidense Robert Fulton construyó un submarino de 6,4 m al que llamó Nautilus. Su forma era similar a la de los submarinos modernos. Fulton introdujo en su nave dos importantes innovaciones: timones horizontales y verticales, y el uso del aire comprimido como fuente de oxígeno durante la inmersión. Al sumergirse, el Nautilus se desplazaba mediante una hélice de cuatro aspas alimentada de forma manual. En la superficie, el barco se desplazaba gracias a unas velas sujetas a un mástil plegable.
Durante la Guerra Civil estadounidense el Ejército Confederado construyó cuatro naves sumergibles que utilizó para luchar contra la flota de la Unión. En 1864 el submarino confederado Hunley hizo explotar el USS Housatonic en el puerto de Charleston (Carolina del Sur), pero resultó también destruido en la explosión.
En la segunda mitad del siglo XIX hubo numerosos intentos para obtener una forma de propulsión eficiente bajo el agua. En 1885, el científico español Isaac Peral ideó un motor eléctrico alimentado por unos acumuladores inventados por él mismo. Varios años antes, en 1864, el también inventor español Narciso Monturiol había desarrollado con éxito un sistema de propulsión a vapor en su segundo submarino, Ictíneo. Los científicos investigaban con fuentes de energía como el aire comprimido, el vapor y la energía eléctrica. El primer submarino realmente práctico, con una fuente de energía eficiente, fue creado por el estadounidense John Philip Holland, quien utilizó un sistema de propulsión dual. Fue botado en 1898 y disponía de un motor de gasolina para moverse en la superficie y de un motor eléctrico para hacerlo bajo el agua. La nave, de unos 16,2 m, fue comprada por el gobierno estadounidense en 1900 y bautizada como USS Holland.
SUBMARINOS DEL SIGLO XX
El ingeniero estadounidense Simon Lake hizo varias contribuciones que aún perduran en los submarinos actuales, destacando la superestructura de inundación libre, que diseñó en 1898. En 1906 los alemanes utilizaron motores diesel en submarinos (véase Motor de combustión interna). Con la invención del radar y del torpedo autopropulsado, el submarino se convirtió en un elemento fundamental de las fuerzas navales. Su efectividad bélica quedó demostrada en el transcurso de la I Guerra Mundial, cuando los submarinos alemanes, llamados U-boats, se emplearon contra los barcos mercantes y de guerra aliados. Sus éxitos forzaron la invención de las cargas de profundidad.
Entre este conflicto y la II Guerra Mundial se realizaron varias mejoras en el diseño y en el funcionamiento de los submarinos. Se inventaron los dispositivos acústicos de comunicación y detección de las naves enemigas (véase Sonar; Ultrasónica). Dispositivos de rescate como el pulmón Momsen (un equipo ligero de respiración) se hicieron obligatorios, para que la tripulación lo usara en caso de emergencia. Al iniciarse la II Guerra Mundial, un submarino estadounidense común podía desarrollar una velocidad de 18 nudos en superficie, propulsado por motores diesel, y de 8 nudos bajo el agua con motores eléctricos. Las operaciones submarinas se veían limitadas en el tiempo por la carga máxima admisible por las baterías; por eso, los submarinos estaban obligados a ascender de forma regular.
Durante la II Guerra Mundial los alemanes introdujeron la chimenea de ventilación, que permite que un submarino recargue sus baterías mientras está sumergido a la profundidad del periscopio. Esta chimenea consiste en un tubo largo que sobresale de la superficie del mar en el que se encuentran unos conductos de entrada que suministran oxígeno al motor y conductos de salida para los gases de la combustión. Este dispositivo extendió el alcance de los submarinos de modo sustancial. En 1950, un submarino con chimenea de ventilación logró un récord de navegación submarina al hacerlo desde Hong Kong hasta Honolulú: recorrió una distancia de 8.370 kilómetros en 21 días.
En 1953 se construyó el USS Albacore con un nuevo tipo de casco en forma de gota. Este casco incrementaba tanto la velocidad durante la inmersión que casi todos los submarinos posteriores se han construido con esta forma.
En 1954 se incorporó a la flota británica el HMS Explorer, que se propulsaba por turbinas cuyo combustible era el peróxido de hidrógeno, lo que permitió extender nuevamente el alcance de las inmersiones.
SUBMARINOS NUCLEARES
La innovación más revolucionaria en la navegación submarina llegó con la aplicación de la energía nuclear a la propulsión de los submarinos. El primer submarino nuclear, el Nautilus, se botó en 1954 y estuvo en servicio activo al año siguiente. En 1955, durante una travesía experimental, el submarino navegó en completa sumersión desde Nuevo Londres (Connecticut) hasta San Juan de Puerto Rico: recorrió 2.170 km en 84 horas. Su velocidad de crucero durante la inmersión fue de 20 nudos, con una autonomía prácticamente ilimitada. En agosto de 1958, el Nautilus realizó la primera travesía submarina del polo norte, atravesándolo bajo el casquete polar, desde Point Barrow (Alaska) hasta un punto situado entre Spitsbergen (Noruega) y Groenlandia. Más tarde, ese mismo mes, el USS Skate, otro submarino nuclear botado el año anterior, alcanzó junto al USS Seawolf y el USS Swordfish el polo norte, en un viaje de exploración. El Seawolf fijó un nuevo récord de resistencia bajo el agua en 1958: 60 días entre el 7 de agosto y el 6 de octubre.
En 1956 se botó el USS Skipjack. Éste era un submarino nuclear con un solo propulsor que, además, tenía el casco con la forma de gota que inauguró el Albacore. Al iniciarse la década de 1960 entraron en funcionamiento versiones más desarrolladas del Skipjack: los submarinos de clase Thresher. Pero el 10 de abril de 1963 el USS Thresher, con una tripulación de 129 personas, desapareció durante unas pruebas de inmersión profunda en el océano Atlántico, a unos 400 km al este de Boston. Tras la tragedia se intensificaron los estudios y se aplicaron una serie de innovaciones en el diseño y en el rescate submarino (véase Exploración de las profundidades marinas; Buceo).
En 1960 se construyeron en Estados Unidos los primeros submarinos que transportaban y lanzaban misiles balísticos de combustible sólido (SLBM, del inglés solid-propellant submarine-launched ballistic missiles). Estos misiles de cabeza nuclear (misiles Polaris) pueden alcanzar objetivos situados a 4.000 km de un submarino sumergido. A mediados de la década de 1960, la Marina estadounidense desarrolló un misil antisubmarino de gran alcance guiado por inercia. Este misil podía ser disparado por los cañones para torpedos de cualquier submarino. A finales de la década de 1960, los misiles Polaris fueron sustituidos en parte por un nuevo tipo de SLBM de más largo alcance: el misil Poseidón, que puede transportar hasta diez cabezas nucleares. Véase también Cohete.
A finales de la década de 1970, Estados Unidos aceleró el desarrollo del sistema Trident I, sucesor de los Polaris y los Poseidón. El Trident I incluye un nuevo tipo de submarino nuclear de la clase Ohio equipado con 24 cañones de lanzamiento; cada cañón contiene un ICBM con un alcance de 7.400 kilómetros. En 1981 fue botado y puesto en servicio activo el primer submarino de este tipo, el USS Ohio.
En 1988, Estados Unidos tenía 132 submarinos en activo, casi todos propulsados por reactores nucleares. Estos reactores permiten realizar travesías de 640.000 km sin repostar. Se estima que la Unión Soviética poseía unos 120 submarinos nucleares, 48 de los cuales tenían misiles de crucero; el resto disponía de misiles teledirigidos.

sábado, 14 de agosto de 2010

Cohete






La mayor parte del cohete contiene el combustible líquido y un agente oxidante líquido. Combustible y agente oxidante se mezclan y arden en la cámara de combustión. La presencia del agente oxidante asegura que el combustible arda con mayor eficacia que si sólo dispusiera del oxígeno del aire circundante.

Cohete, término general que se aplica a cualquier dispositivo propulsado a reacción por la expulsión de los gases generados en una cámara de combustión (véase Propulsión a chorro). Dado que el combustible propulsor contiene carburante y un oxidante, el cohete puede propulsarse con independencia de su entorno, al contrario que otros motores a reacción, que utilizan el oxígeno presente en la atmósfera para quemar el carburante que transportan (véase Combustión). El motor de un cohete, por tanto, es autocontenido y resulta el único adecuado para propulsar vuelos dirigidos al espacio exterior.
El impulso para propulsar un cohete se basa en la tercera ley de la mecánica de Isaac Newton. Esta ley afirma que para cada acción existe una reacción de la misma intensidad y dirección opuesta. Puede entenderse el principio de funcionamiento del motor de un cohete si se piensa en el ejemplo de un recinto cerrado lleno con un gas comprimido. Dentro del recinto, el gas ejerce una misma presión sobre todos los puntos de las paredes. Pero si se hace un agujero en la parte inferior del recinto, el gas escapa por él y la presión que el gas ejerce sobre la parte de arriba ya no se ve contrarrestada por la de abajo. Entonces, la presión interna del gas empuja el recinto hacia arriba como reacción al chorro de aire que se escapa por debajo. La cantidad de empuje que desarrolla un motor de cohete depende, sobre todo, de dos factores: la velocidad a la que los gases abandonan la cámara de combustión y la masa de los gases que quedan en el interior.
Los cohetes se pueden dividir en dos tipos: los de carburante sólido, como los misiles balísticos intercontinentales (intercontinental ballistic missiles, ICBM), y los de carburante líquido, como el impulsor espacial Saturn 5 (véase Misiles teledirigidos). En ambos casos se llama motor a la cámara de combustión donde se quema el carburante. En un cohete de carburante líquido, los combustibles propulsores se almacenan en tanques separados y se hacen entrar en cantidades adecuadas dentro del motor; en los cohetes de carburante sólido la carga propulsora se almacena y se quema dentro del motor.
La palabra cohete se utiliza muchas veces para referirse tanto al dispositivo que produce el empuje como al conjunto del vehículo propulsado. Para evitar la ambigüedad, sobre todo en los casos de vehículos grandes, como los misiles o los cohetes de lanzamiento espacial, se llama motor del cohete al dispositivo propulsor del mismo.
COHETES DE CARBURANTE SÓLIDO
Los primeros cohetes de combustible sólido se propulsaban gracias a una mezcla que contenía los mismos ingredientes que la pólvora negra pero en proporciones diferentes. La pólvora en peso se compone de un 75% de salitre, un 12% de azufre y un 13% de carbón vegetal. La mezcla propulsora de los primeros cohetes se componía de un 60% de salitre, un 15% de azufre y un 25% de carbón vegetal. Debido a su distinta composición, la carga del cohete se quemaba con más lentitud que la pólvora.
Historia
El cohete de combustible sólido fue inventado por los chinos a principios del siglo XIII. El uso militar más antiguo del que se tenga noticia ocurrió en 1232 durante el asedio de Kaifeng, antigua capital de la provincia de Henan. Durante el ataque se lanzaron cohetes para incendiar las tiendas de campaña y las fortificaciones hechas de mimbre, que se resistían a las flechas. Unos años más tarde, ya se usaban cohetes en las operaciones militares de Europa y norte de África, pero después del siglo XV se usaron en particular para incendiar los aparejos de los barcos enemigos en las batallas navales. En la Europa del siglo XVI los cohetes también eran una parte primordial de los fuegos artificiales.
Sin embargo, en el Extremo Oriente los cohetes siguieron utilizándose como armas hasta bien entrado el siglo XVIII, fecha en la cual el Ejército del príncipe indio musulmán Haidar Alí, monarca de Mysore, tenía una división de infantería de lanzadores de cohetes. Éstos, fabricados con bambú, eran por lo general grandes y tenían un alcance de centenares de metros. Los lanzadores de cohetes ganaron las primeras dos batallas de Seringapatam, frente a las fuerzas británicas de la India.
Cuando las noticias de esas primeras derrotas llegaron a Gran Bretaña, el oficial de artillería William Congreve decidió estudiar la utilidad del cohete como arma de guerra. En pocos años habían mejorado tanto los cohetes de los fuegos artificiales que se disponía de alguno con un alcance de unos 3.300 metros. Sus cohetes tenían una carcasa de hierro con una carga de 3 kilogramos de material incendiario. La vara que se empleaba para estabilizar su vuelo tenía una longitud de 4 metros y el peso total del cohete era de 14 kilogramos.
El cohete de Congreve se utilizó por primera vez en 1805 durante las Guerras Napoleónicas, cuando Gran Bretaña atacó el puerto de Boulogne, en Francia, con el objetivo de destruir la flota de barcazas que Napoleón había almacenado, en preparación de una futura invasión de Gran Bretaña. Los cohetes y el ataque fallaron, debido a las extremas condiciones meteorológicas. Pero al año siguiente los cohetes de Congreve fueron usados con gran éxito en un segundo ataque a Boulogne. En 1807, la ciudad de Copenhague y una gran flota francesa anclada en su puerto fueron destruidas, casi en su totalidad, en un ataque naval durante el cual se lanzaron miles de cohetes. En 1813 la ciudad libre de Danzig (Gdańsk) se vio forzada a rendirse, cuando los cohetes británicos incendiaron y destruyeron las reservas de comida de la ciudad. También se crearon brigadas de cohetes en las fuerzas de tierra y muchas de éstas participaron en acciones victoriosas, contra Estados Unidos, en la Guerra Anglo-estadounidense. Los cohetes de Congreve se usaron cuando la nave británica Erebus bombardeó el Fuerte McHenry en Baltimore, Maryland. Los mismos cohetes también se utilizaron en la batalla de Waterloo, donde fue derrotado Napoleón.
Hacia 1825, casi todos los países europeos habían copiado el cohete de Congreve y habían constituido brigadas de cohetes. En 1847 el inventor británico William Hale desarrolló un cohete de giro estabilizado, con lo que pudo eliminar el peso muerto de la vara aerodinámica. El cohete de Hale tenía agujeros de estabilización. Los modelos posteriores se construyeron con aspas de estabilización en la parte de atrás. La patente de estos cohetes fue comprada por Estados Unidos y se utilizaron en la Guerra Mexicano-estadounidense y en la Guerra Civil estadounidense.
Sin embargo, el empleo de los cohetes en la guerra empezó a declinar después de 1850, debido a la aparición de cañones más ligeros y de bombas estabilizadas de mayor precisión. Una aplicación pacífica de los cohetes durante el siglo XIX residió en el desarrollo de cohetes salvavidas. Antes de la época del vapor, los barcos de vela embarrancaban con frecuencia durante las tormentas en las costas de Gran Bretaña y del norte de Europa. Utilizando un cohete de Congreve se podía lanzar una cuerda ligera desde la costa hasta el barco necesitado de socorro. Después se tiraba de ella y se hacía llegar una soga más resistente, con lo que se podía arrastrar los barcos salvavidas hacia la costa o instalar un sistema de boyas mediante el cual los marineros podían salir del barco utilizando una maroma.
Hacia 1880 ya existían los cohetes balleneros. Eran arpones propulsados por un motor de cohete que se lanzaban desde un pequeño barco. Una carga explosiva situada en la punta mataba a la ballena y enganchaba un garfio atado a la cuerda que llegaba hasta el barco. También se usaban con frecuencia para hacer señales en el mar. A finales del siglo XIX, los militares utilizaban poco los cohetes. Pero unos cuantos científicos, como el físico ruso Konstantin Eduardovich Tsiolkovsky, sugirieron que se empleasen para propulsar vehículos espaciales capaces de realizar vuelos interplanetarios.
Los cohetes se utilizaron durante la I Guerra Mundial para hacer señales, aunque los franceses también lo hicieron para derribar globos de observación llenos de hidrógeno. El físico estadounidense Robert Goddard experimentaba en esa época con cohetes de carburante sólido y construyó un famoso cohete para realizar mediciones científicas a mayor altitud de la que podía alcanzar un globo. Cuando los Estados Unidos entraron en la I Guerra Mundial, en 1917, Goddard ofreció sus servicios al Ejército estadounidense. Se hicieron algunas pruebas previas unos días antes de que terminase la guerra, en noviembre de 1918. Goddard había mejorado su modelo original utilizando pólvora sin humo en vez de la pólvora negra. También había añadido una tobera convergente-divergente diseñada de un modo más correcto, que mejoraba en gran medida la eficacia del motor.
Unos veinte años más tarde, Clarence N. Hickman, uno de los ayudantes de Goddard, mejoró más este pequeño cohete. El resultado fue el cohete anticarros, cuya cabeza explosiva le confería una gran potencia. Al dispararse, sin retroceso, por un tubo lanzador o lanzagranadas apoyado en el hombro de un soldado de infantería, llegaba a tener un alcance de unos 180 metros. Una carga explosiva de 200 gramos atravesaba un blindaje de unos 17 centímetros de espesor. Las modificaciones y mejoras posteriores hicieron que este arma, de 6 centímetros de diámetro, llegase a tener un alcance de 640 metros. Las modificaciones posteriores a la guerra produjeron el llamado superlanzagranadas, que tenía doble capacidad de penetración y un alcance de 730 metros.
Los Estados Unidos construyeron cohetes con un calibre de 11,3 milímetros que la artillería podía disparar desde lanzadores múltiples, y los soldados podían transportar como armamento individual y disparar desde el tubo o caja de transporte. También podían dispararse desde lanzadores simples o múltiples instalados en las alas de los aviones. Su longitud podía ir desde los 76 centímetros del cohete de artillería estabilizado por giro, hasta los 1,90 metros de un cohete estabilizado por alerones para aviones. Este último podía ser muy preciso. El modelo más usado en los aviones fue el Cohete de Aeronave de Alta Velocidad (en inglés High Velocity Aircraft Rocket, HVAR). Tenía unos 12 centímetros de largo y transportaba una cabeza explosiva de unos 21 kilogramos a una velocidad de 410 metros por segundo, con un alcance de más de 4.570 metros.
Los científicos alemanes desarrollaron dos tipos de cohetes de bombardeo. El Nebelwerfer, de 15 centímetros, y el Wurfgerät, de 21 centímetros. A pesar de su nombre, que significa ‘humeante’, el primero transportaba una cabeza explosiva de gran potencia, mientras que el Wurfgerät llevaba cabezas incendiarias. El Nebelwerfer fue modificado tiempo después para funcionar como una potente arma aire-aire.
Construcción

Estos ingenieros realizan pruebas ultrasónicas en un misil, a la vez que estudian posibles problemas. Una amplia base de conocimientos permite a los ingenieros reconocer fallos potenciales en un sistema aunque no pertenezcan a su especialidad.
Después de la II Guerra Mundial se construyeron cohetes de carburante sólido para muchos fines, en especial como propulsores de misiles teledirigidos. Las partes principales de un cohete de carburante sólido son la carga, que puede ser de explosivos o de instrumentos científicos, y la cámara de combustión o motor, que contiene la carga de carburante y válvulas para expulsar los gases de la combustión. También puede tener alerones para estabilizar su vuelo.
Los cohetes de carburante sólido de hoy en día pueden clasificarse en dos tipos: los de combustión libre y los de combustión restringida o con carga lateral. Un ejemplo de los cohetes de combustión libre son los HVAR de la II Guerra Mundial, cuya carga era un bloque de pólvora de sección cruciforme suspendido en el centro del motor del cohete. Esta carga ardía en todas sus superficies excepto en los dos extremos, que estaban protegidos por plásticos no inflamables. Una carga de combustión libre también puede tener la forma de un tubo grueso que arda por dentro y por fuera. Sea cual sea la forma de la carga de combustión libre, siempre se la llama carga y lo que la mantiene en su lugar son las sujeciones. Las cargas de combustión libre han llegado a arder durante menos de un segundo.
Para obtener tiempos de combustión más largos, se emplean cargas de combustión lateral. Éstas arden a través de su sección o, si está hueca, desde el centro hacia el exterior del cohete. Este sistema permite reducir el espesor de la superficie metálica porque durante casi todo el tiempo de combustión el tubo metálico está reforzado por lo que queda de la carga.
Las cargas de carburante sólido modernas son muy grandes. Por ejemplo, cuando el misil Trident-II D5 es lanzado desde un submarino pesa unos 59.000 kilogramos. Los dos propulsores de carburante sólido de la lanzadera espacial SRB (del inglés Solid Rocket Boosters) pesan más de medio millón de kilos por unidad. Cada uno de ellos está fabricado con 11 segmentos de acero y son los cohetes de combustible sólido más grandes que se han hecho en Estados Unidos. Después de la catástrofe del Challenger se rediseñaron las uniones entre segmentos para evitar que se pudiera repetir la dificultad que provocó la explosión de la nave espacial.
El problema de diseñar un misil defensivo antibalístico ABM (del inglés, AntiBallistic Missile) que intercepte ICBMs reside en que es preciso combinar tiempos de reacción muy cortos y grandes aceleraciones. Los cohetes de carburante sólido son los que mejor se adaptan a estas necesidades, y es por lo que los ABM Safeguard utilizan carburantes sólidos. Este tipo incluye los modelos Sprint, un misil de intercepción de baja altitud (24-40 km), y el Spartan, un misil antibalístico de gran altitud (más de 160 km).
Los propulsores sólidos modernos son gomas sintéticas mezcladas durante su fabricación con oxidantes como el perclorato de amonio. Las gomas sintéticas son buenos combustibles que también tienen la ventaja de ser bastante flexibles, con lo que no se producen roturas si se tratan con rudeza. La mezcla de goma sintética y perclorato de amonio puede hacerse más poderosa si se le añaden metales en polvo como el aluminio.
COHETES DE CARBURANTE LÍQUIDO

Cohete
El desarrollo de los cohetes de carburante líquido empezó en la década de 1920. El primer cohete de combustible líquido fue construido por Goddard y lanzado en 1926, cerca de Auburn en Massachusetts. El primer cohete alemán de combustible líquido, construido también por iniciativa privada, se lanzó cinco años más tarde. A finales de 1932 la Unión Soviética lanzó el suyo por primera vez. El primer gran cohete de combustible líquido que tuvo éxito fue el V-2 experimental alemán, diseñado durante la II Guerra Mundial bajo la dirección de Wernher von Braun, experto en cohetes. El V-2 fue lanzado por primera vez el 3 de octubre de 1942 desde la base de investigación Peenemünde, en la isla de Usedom.
Descripción
En la primera generación de cohetes de carburante líquido, la punta es la que lleva la carga, que puede ser una cabeza explosiva o instrumentos científicos. La parte adyacente a la cabeza, por lo general, contiene el equipo de guía como un giróscopo o brújula giroscópica, los sensores de aceleración o un ordenador. Después vienen los dos tanques principales: uno de ellos contiene el carburante y el otro el agente oxidante. Si el tamaño del cohete no es muy grande ambos componentes pueden conducirse al motor presurizando sus tanques con algún gas inerte. Para cohetes grandes este método no es práctico, porque los tanques serían desproporcionadamente pesados. Por tanto, en los grandes cohetes de carburante líquido, se obtiene la presión mediante bombas situadas entre los tanques y el motor del cohete. Dado que las cantidades de combustible que deben ser bombeadas son muy grandes (hasta el V-2 quemaba 127 kilos de carburante por segundo), la bomba necesaria es una centrífuga de alta capacidad, motorizada por una turbina de combustión. El conjunto formado por la turbina y su combustible, las bombas, el motor y todo su equipo asociado forman el motor de un cohete de carburante líquido.
Con la llegada de los vuelos espaciales tripulados, la carga evolucionó y aparecieron una serie de cohetes como los Mercury, Gemini y Apolo (véase Astronáutica). Por fin, con la lanzadera espacial, el cohete de carburante líquido y su carga se integran en una sola unidad.
Carburantes líquidos
Aunque la mayor parte de los científicos que iniciaron el campo de los cohetes de combustible líquido usaron gasolina, lo normal es la utilización de alcohol etílico o queroseno refinado. El alcohol etílico (combustible de cohetes militares como el V-2, el Viking y el Redstone) se quema con el oxígeno líquido que, sin embargo, tiene el inconveniente de que su punto de ebullición es tan bajo que las pérdidas por evaporación son considerables.
La búsqueda de un sustituto para el oxígeno líquido ha llevado al descubrimiento, en parte por accidente, de un nuevo tipo de carburante líquido: los hipergoles. Se componen de ácido nítrico como oxidante y de anilinas o hidracinas como combustible. Un carburante hipergólico no necesita que se produzca la ignición, ya que el combustible y el oxidante se encienden de modo espontáneo al entrar en contacto. Dentro de las hidracinas, la dimetilhidracina asimétrica es en especial eficaz para provocar la ignición espontánea.
El hidrógeno líquido es, en teoría, el combustible más eficaz, pero es difícil y peligroso de manejar. Sin embargo, los problemas que conlleva el hidrógeno fueron solucionados con éxito por los ingenieros aeronáuticos estadounidenses que trabajaron en los cohetes de lanzamiento espacial Centaur y Saturn 5, así como en la lanzadera espacial.
Cohetes híbridos
En un cohete híbrido el combustible es sólido, por lo general algún tipo de plástico, y el oxidante es un líquido, que puede ser oxígeno líquido o en algunos casos ácido nítrico. El líquido se almacena bajo presión en un tanque presurizado sobre el combustible, que arde hacia el exterior desde un agujero central. Este sistema combina las ventajas de los sólidos (fácil manejo) con las ventajas de los líquidos, que permiten regular la velocidad de la combustión, o su detención si se corta el flujo de líquido oxidante. Es probable que los sistemas híbridos se usen sobre todo para cambiar la dirección o para realizar ajustes en la velocidad.
Algunos misiles y aeronaves se propulsan mediante cohetes de varias fases que utilizan carburantes líquidos en unas y sólidos en otras. Un ejemplo de este caso es el cohete que empuja al lanzador espacial Titan III C de las Fuerzas Aéreas Estadounidenses. Dispone de dos cohetes de propulsión desechables con carburante sólido, asociados a las fases superiores de carburante líquido.
Toberas de cohetes
Los motores de cohetes de altas prestaciones, como los que se usan en los vehículos espaciales que funcionan en el vacío, necesitan toberas muy grandes para alcanzar la velocidad de escape supersónica necesaria. La tobera debe tener una parte que se estrecha desde la cámara de combustión hasta llegar a la parte más fina llamada garganta, donde se alcanza la velocidad del sonido, y luego una parte que se ensancha. El diámetro de la tobera a la salida puede ser unas cuatro o cinco veces el diámetro que tenga en la cámara de combustión.
Los gases calientes a altas velocidades que rozan las paredes de la tobera provocan un grave problema de disipación de calor, sobre todo si el tiempo de funcionamiento puede llegar a ser de minutos más que de segundos (véase Transferencia de calor). Este problema de disipación térmica es más importante en los alrededores de la garganta, donde se utiliza un sistema de refrigeración regenerativa en los cohetes de carburante líquido. En un motor de hidrógeno líquido y oxígeno, por ejemplo, el hidrógeno puede bombearse a través de pequeños tubos que formen las paredes de la tobera. El hidrógeno superenfriado es introducido en la fase supersónica y desde allí fluye hasta la cámara de combustión.
Un motor de cohete avanzado que es mucho más eficiente que el de motor de hidrógeno líquido-oxígeno líquido es el motor nuclear. Una forma de medir la capacidad del motor de un cohete es la masa de carburante que se gasta por segundo. Esto se llama el impulso específico. Mientras que el motor de hidrógeno-oxígeno tiene un impulso de unos 200 kilogramos por segundo, el motor nuclear, que se desarrolló en las décadas de 1960 y 1970 en Estados Unidos, tenía un impulso de unos 500 kilogramos por segundo. Este motor usa hidrógeno líquido que se vaporiza y calienta a altas temperaturas con un reactor de fisión nuclear. El hidrógeno no llega a arder sino que se limita a atravesar la tobera del cohete a grandes presiones y a altas velocidades. Este motor fue diseñado para ser utilizado desde el espacio, más que para lanzar cohetes desde tierra. Su principal aplicación hubiera podido ser el de propulsor de un servicio de lanzadera entre la Tierra y la Luna, o de las misiones espaciales a otros planetas.
Otros modelos diferentes de motores de cohetes se investigan para su uso futuro en misiones espaciales prolongadas durante la travesía de regiones con un débil campo gravitacional. En esas condiciones, pueden utilizarse cohetes de poco impulso, si éste puede mantenerse durante un largo periodo utilizando el combustible de modo eficiente. A continuación se describen algunos de los motores que pueden utilizarse para este fin. El motor de chorro de plasma contiene un gas ionizado muy caliente, al que se le permite escapar de la parte trasera del motor a gran velocidad (véase Ionización). Algunos modelos del motor de plasma aceleran el gas ionizado mediante campos electromagnéticos. El motor de iones expulsa átomos ionizados, de cesio por ejemplo, a gran velocidad, gracias a un campo electrostático (véase Ion). El motor fotónico podría expulsar fotones, o partículas de luz, a la velocidad de la luz (véase Fotón). Aunque la cantidad de energía de un solo fotón es infinitesimal, la enorme cantidad de fotones eyectados permitiría al motor fotónico mantener un pequeño impulso, durante un prolongado periodo de tiempo.
Otras aplicaciones de los cohetes
Además de su utilidad militar, los cohetes de carburante sólido también se emplean hoy en día como señales de socorro lanzadas desde barcos, aviones o desde el suelo; como vehículos de prueba en la investigación de misiles guiados y para llevar cables a través de los ríos, en la construcción de puentes. En algunos casos los cohetes de carburante sólido han transportado instrumentos científicos a gran altura para la investigación de los rayos cósmicos. Un tipo especial de cohete de carburante sólido se emplea en los despegues de aviones cargados en exceso para ayudarles a despegar.
Los cohetes de carburante líquido, además de utilizarse en los misiles, se emplean para transportar los instrumentos científicos en las investigaciones de gran altitud, y para propulsar los vehículos de prueba con forma de almádena utilizados en medicina aérea y en la investigación balística (véase Medicina aerospacial; Balística).

La Locomotora según Encarta






Locomotora, cualquier tipo de vehículo autopropulsado utilizado en vías férreas o ferrocarriles para impulsar o arrastrar otros tipos de unidades rodantes. Las locomotoras se diferencian de otros tipos de vehículos de vías férreas autopropulsados en que sólo se utilizan como unidades de arrastre y no están diseñadas para el transporte de pasajeros o de cargas.
ORÍGENES
La primera locomotora práctica fue construida en Inglaterra en 1804 por el ingeniero e inventor Richard Trevithick. Esta locomotora, con cuatro ruedas motrices, tenía ruedas lisas que corrían sobre raíles metálicos lisos; su éxito demostró que se podía obtener suficiente tracción sin utilizar ni ruedas ni cadena dentada. La locomotora de Trevithick expelía el vapor en el conducto de humo de la caldera del motor; esto proporcionaba un impulso de corriente para el fuego de la caldera y se empleó en locomotoras a vapor posteriores.
Tras el éxito de las pruebas de la locomotora de Trevithick, en Gran Bretaña se construyeron varias locomotoras, con éxito moderado, sobre todo para uso en minería. Hasta 1829 no se desarrolló una locomotora en una vía férrea que transportara tanto pasajeros como carga. En aquel año, el Rocket, diseñado por George Stephenson, ganó un concurso patrocinado por la compañía de transporte ferroviario Liverpool and Manchester Railway. El Rocket arrastró una carga de tres veces su propio peso a una velocidad de 20 km/h y transportó un vagón lleno de pasajeros a 39 km/h. Este rendimiento estimuló la construcción de otras locomotoras y la extensión de líneas de ferrocarril.
También en 1829 se probó en Honesdale, Pennsylvania (Estados Unidos), la primera locomotora que funcionó en el hemisferio occidental. Esta locomotora, llamada Stourbridge Lion, fue construida en Inglaterra por la Delaware and Hudson Canal Company. Al año siguiente se comenzaron a utilizar con regularidad las primeras locomotoras construidas en los Estados Unidos: la Best Friend, puesta en circulación por la South Carolina Canal and Railroad Company, y la Peter Cooper, también conocida como Tom Thumb, propiedad de la Baltimore and Ohio Railroad Company. Old Ironsides, construida por el industrial estadounidense Matthias William Baldwin para la Philadelphia, Germantown & Norristown Railroad Company, era una locomotora con cuatro ruedas con un peso cercano a las cinco toneladas. Se realizaron las primeras pruebas en 1832 y se puso en servicio casi de inmediato.
Como consecuencia de este avance se realizaron muchas mejoras mecánicas, tanto en Gran Bretaña como en Estados Unidos. Estos dos países tuvieron un desarrollo de locomotoras casi paralelo. En 1831, el chasis giratorio o carretilla suplantó a la carretilla fija; en 1836 se introdujeron los pares externos de ruedas motrices y en 1837 se aplicaron contrapesos a las ruedas motrices y otras partes para suavizar el funcionamiento del motor. La primera locomotora con seis ruedas motrices y carretilla de cuatro ruedas, también llamada de diez ruedas, apareció en 1847. En 1863 se comenzaron a utilizar locomotoras con seis ruedas motrices y carretilla de arrastre de dos ruedas, y en 1867 se construyó la primera locomotora con ocho ejes motrices y carretilla de dos ruedas.
LOCOMOTORAS A VAPOR
Las locomotoras a vapor se pueden clasificar de diversas formas. La clasificación más utilizada, sin embargo, se basa en el número y disposición de las ruedas. Esta clasificación proporciona el número de ruedas en la carretilla de arrastre, el número de ruedas motrices y el número de ruedas en la carretilla de remolque. De esta forma, una locomotora 2-4-0 tendría una carretilla de arrastre de dos ruedas, cuatro ruedas motrices y carecería de carretilla de arrastre. Muchas locomotoras tienen también nombres especiales según su tipo.
Hasta 1940, los motores a vapor proporcionaban la fuerza motriz de la mayoría de las locomotoras utilizadas en las vías férreas. Después, la locomotora de vapor se fue quedando obsoleta, primero en los Estados Unidos y más adelante en el resto del mundo. Hacia finales de la década de 1980, sólo unas pocas, como las utilizadas en líneas turísticas de vía estrecha, se utilizaban en los países industrializados. Véase Máquina de vapor.
LOCOMOTORAS DIESEL-ELÉCTRICAS
Entre las locomotoras más importantes desarrolladas en el siglo XX se encuentran las locomotoras eléctricas, que reciben la energía eléctrica mediante una red de cable superior (catenaria) o un tercer carril situado junto a la vía normal (vías férreas), y las locomotoras diesel-eléctricas. En las locomotoras diesel-eléctricas, conocidas comúnmente como diesel, los motores diesel se utilizan para proporcionar energía a generadores o alternadores conectados a rectificadores de estado sólido que mueven motores eléctricos conectados a los ejes (véase Motor de combustión interna). Este tipo de locomotora elimina la necesidad de costosas líneas de transmisión de energía. Comparada con la locomotora a vapor, tiene mayor disponibilidad, es decir, mayor número de horas productivas por día, puesto que no necesita realizar paradas frecuentes para repostar agua ni requerir otros servicios. Otras ventajas respecto a los motores a vapor incluyen su relativa eficacia para convertir el gasóleo en energía disponible y su capacidad para desarrollar una mayor proporción de su máxima potencia de arrastre a bajas velocidades. Además, mientras que las locomotoras a vapor requieren un conductor y un fogonero por cada unidad, un solo conductor puede manejar varias diesel-eléctricas, lo que permite trenes de mayor longitud con menor número de empleados.
Los recientes diseños de locomotoras aprovechan el uso de turbocargadores mejorados que trabajan con motores de mayor potencia y más eficientes. Los sistemas de control de las locomotoras se han convertido en dispositivos electrónicos, que sustituyen la mayor parte de las funciones de regulación eléctrica. Los microprocesadores a bordo controlan la velocidad del motor, la inyección de gasoil y el trabajo del alternador, y se interrelacionan con sistemas mejorados para detectar problemas de tracción de las ruedas motrices, produciendo una corrección más rápida y una adherencia más óptima. Una función adicional del microprocesador es controlar el rendimiento de todos los sistemas de la locomotora, incrementando su fiabilidad y facilitando la corrección de los problemas. Una innovación importante de la locomotora es la introducción de motores de tracción de frecuencia variable, voltaje variable y de corriente alterna de tres fases, reduciendo el peso y mejorando la adherencia de las ruedas a la vía.
LOCOMOTORAS DE TURBINA-ELÉCTRICAS
Después de la II Guerra Mundial, la investigación realizada en la ingeniería de combustión ayudó al desarrollo de locomotoras de turbina-eléctricas, en las que las turbinas de gas o vapor se usaban para impulsar generadores que proporcionaban energía a motores eléctricos. Se necesitaba una caldera para producir el vapor en una turbina de vapor. En la turbina de gas, el gas se producía en una cámara de combustión situada directamente delante de la maquinaria de la turbina. El carbón o el aceite se podían usar como carburante para producir vapor o gas para el funcionamiento de la turbina. El propano líquido se ha utilizado de forma experimental como carburante para turbinas de gas. Todas estas locomotoras basadas en turbinas se han considerado poco económicas para el transporte general de carga. Sólo la turbina de gas, con tracción mediante transmisión hidráulica, ha continuado en servicio en automotores que propulsan trenes ligeros de pasajeros.

Los aviones según Encarta






Avión o Aeroplano, aeronave más pesada que el aire, por lo general propulsada por medios mecánicos y sustentada por alas fijas como consecuencia de la acción dinámica de la corriente de aire que incide sobre su superficie (véase Aerodinámica). Otras aeronaves más pesadas que el aire son: el planeador o velero, provisto también de alas fijas y carente de motor; aquéllas en las que se sustituyen las alas por un rotor que gira en el eje vertical (véase Autogiro; Helicóptero), y el ornitóptero, cuyo empuje y sustentación se consigue mediante alas batientes. Se han desarrollado modelos de juguete que vuelan perfectamente, pero los de mayor tamaño no han tenido éxito. Véase también Aviación, para la historia de aparatos más pesados que el aire.
La palabra “aeroplano” sugiere normalmente aparatos que operan desde tierra firme, pero en realidad se aplica a otros tipos de aviones, como los transportados, hidroaviones y anfibios. La principal diferencia de configuración entre estos aparatos está en el tren de aterrizaje. Los aviones transportados están diseñados para despegar y aterrizar desde una instalación móvil, la más común es el portaaviones; para ello disponen de un gancho con el que en el momento de aterrizar se sujetan a un cable que cruza la cubierta del portaaviones y, junto con los frenos del propio avión, permiten una carrera de aterrizaje muy corta. Para despegar se enganchan a una catapulta que en pocos segundos, junto con el motor a máxima potencia, les hacen alcanzar la velocidad de despegue. Los hidroaviones sustituyen las ruedas del tren de aterrizaje por flotadores. El modelo conocido como barca voladora tiene el fuselaje como el casco de un barco y, aparte de sus funciones aerodinámicas e hidrodinámicas, sirve para que flote una vez posado en el agua. Los anfibios van provistos de ruedas y flotadores y en algunos casos de casco, lo que permite operar con la misma efectividad tanto en tierra como en agua. Antes de la II Guerra Mundial los hidroaviones se utilizaron para el transporte militar y para el servicio comercial intercontinental. Por su configuración tenían que volar y amerizar despacio. Como los nuevos aviones volaban y podían aterrizar a mayor velocidad, para ganar eficiencia, los grandes aviones pasaron a operar solamente desde tierra. Los anfibios vuelan y aterrizan aún más despacio por su doble tren de aterrizaje y se usan menos. A veces son muy útiles, sobre todo en zonas como la selva, donde la construcción de una pista de aterrizaje es costosa y difícil de mantener, pero, sin embargo, hay abundantes ríos con aguas profundas y tranquilas. Existen flotadores anfibios para avionetas. Parecen flotadores convencionales y tienen una rueda en el centro. La rueda sobresale muy poco y no crea resistencia en el agua, pero asoma lo suficiente para permitir aterrizar en superficies de tierra o de hierba cortada.
Otros modelos de aviones más pesados que el aire son los VTOL y STOL. La aeronave VTOL (del inglés vertical takeoff and landing, ‘despegue y aterrizaje verticales’) es un avión cuyas características de vuelo son semejantes a las de los demás aviones; adicionalmente tienen la capacidad de despegar y aterrizar en vertical. Hay varias maneras de conseguir el despegue vertical desde tierra; la mayor parte de los diseños utilizan motores reactores giratorios que al comienzo del despegue se colocan en posición vertical, y después, poco a poco, van rotando hasta situarse horizontalmente al adquirir la velocidad necesaria para volar; este sistema requiere mucha potencia de empuje en los motores. Las alas variables y los ventiladores móviles se usan también en este tipo de despegues, pero originan resistencias aerodinámicas muy altas para el vuelo horizontal. Los aviones convertibles combinan los rotores de los helicópteros con las alas fijas de los aviones, y resultan apropiados para vuelos comerciales cortos de despegue vertical. Compiten con los helicópteros, pero vuelan a velocidades mayores.
La aeronave STOL (del inglés short takeoff and landing, ‘despegue y aterrizaje cortos’) es un avión que despega y aterriza en tan poca distancia que sólo requiere pistas muy cortas. Es más eficiente, en términos de consumo de combustible y potencia de los motores, que la aeronave VTOL, y además es capaz de volar también a mayores velocidades y con más alcance que los helicópteros. Para aeronaves más ligeras que el aire.

Un aeroplano se sustenta en el aire como consecuencia de la diferencia de presión que se origina al incidir la corriente de aire en una superficie aerodinámica como es el ala. En la parte superior la presión es menor que en la inferior,  y esa diferencia produce un efecto de empuje hacia arriba llamado sustentación. La magnitud del empuje depende de la forma del corte transversal del ala, de su área, de las características de su superficie, de su inclinación respecto al flujo del aire y de la velocidad del mismo.

La sustentación producida en un ala o superficie aerodinámica es directamente proporcional al área total expuesta al flujo de aire y al cuadrado de la velocidad con que ese flujo incide en el ala. También es proporcional, para valores medios, a la inclinación del ángulo de ataque del eje de la superficie de sustentación respecto al de la corriente de aire. Para ángulos superiores a 14 grados, la sustentación cambia con rapidez hasta llegar a la pérdida total cuando, por efecto de esos valores, el aire se mueve produciendo torbellinos en la superficie de las alas. En esta situación se dice que el perfil aerodinámico ha entrado en pérdida.
Cuando un avión está manteniendo la altura, la sustentación producida por las alas y otras partes del fuselaje se equilibra con su peso total. Hasta ciertos límites, cuando aumenta el ángulo de ataque y la velocidad de vuelo se mantiene constante, el avión ascenderá; si, por el contrario, baja el morro del avión, disminuyendo así el ángulo de ataque, perderá sustentación y comenzará a descender. El sistema por el cual sube y baja el morro del avión se llama control de cabeceo.
Durante un vuelo, el piloto altera con frecuencia la velocidad y ángulo de ataque de la aeronave. Estos dos factores a menudo se compensan uno con otro. Por ejemplo, si el piloto desea ganar velocidad y mantener el nivel de vuelo, primero incrementa la potencia del motor, lo que eleva la velocidad; esto a su vez aumenta la sustentación, por lo que para equilibrarla con el peso, bajará poco a poco el morro del avión con el control de cabeceo hasta conseguirlo.
Durante la aproximación para el aterrizaje, el piloto tiene que ir descendiendo y a la vez disminuyendo la velocidad lo más posible; esto produciría una considerable pérdida de sustentación y, en consecuencia, un descenso muy fuerte y un impacto violento en la pista. Para remediarlo hay que lograr sustentación adicional alterando la superficie de las alas, su curvatura efectiva y su ángulo de ataque, mediante mecanismos adicionales como los flaps, alerones sustentadores que se extienden en la parte posterior de las alas, y los slats, en la parte frontal. Ambas superficies se usan para el despegue y aterrizaje, yendo retraídas durante el vuelo de crucero al tener una limitación de velocidad muy reducida, por encima de la cual sufrirían daños estructurales.

Los mismos factores que contribuyen al vuelo producen efectos no deseables, como la resistencia, la fuerza que tiende a retardar el movimiento del avión en el aire. Un tipo de resistencia es la aerodinámica, producida por la fricción que se opone a que los objetos se muevan en el aire. Depende de la forma del objeto y de la rugosidad de su superficie. Se puede reducir mediante perfiles muy aerodinámicos del fuselaje y alas del avión. Hay diseños que incorporan elementos para reducir la fricción, consiguiendo que el aire que fluye en contacto con las alas mantenga el llamado flujo laminar cuando se desliza sobre ellas sin producir torbellinos.
Otro tipo de resistencia, llamada resistencia inducida, es el resultado directo de la sustentación producida por las alas. Se manifiesta en forma de torbellinos o vórtices en la parte posterior de los slats y especialmente del extremo de las alas, y en algunos aviones se coloca una aleta pequeña denominada winglet, que reduce notablemente su efecto.
Se llama resistencia total a la suma de ambas resistencias. La ingeniería aeronáutica trata de conseguir que la relación entre la sustentación y la resistencia total sea lo más alta posible, lo que se obtiene teóricamente al igualar la resistencia aerodinámica con la inducida, pero dicha relación en la práctica está limitada por factores como la velocidad y el peso admisible de la célula del avión. En el avión de transporte subsónico su valor puede llegar a veinte; en los de altas características se duplica ese valor, mientras que el incremento de la resistencia, cuando se vuela a velocidades supersónicas, lo reduce a menos de diez.


         VUELO SUPERSÓNICO
La era de la aviación supersónica comenzó después de la II Guerra Mundial y su desarrollo tuvo que resolver problemas aerodinámicos y técnicos que hicieron los vuelos de experimentación tan peligrosos e inciertos como los de los primeros aviadores. Ni los complejos análisis matemáticos ni los resultados obtenidos en el túnel aerodinámico, donde se experimentaban los prototipos, podían garantizar que las características de un avión en vuelo supersónico fuesen, no ya satisfactorias, sino seguras sin más.
La barrera del sonido
                 
         Ondas de choque 
                 
Ondas de choque
Cuando un avión se mueve a velocidad subsónica, las variaciones de presión que se producen en el aire (el ruido) viajan más rápido que él y se dispersan con facilidad. Si el avión viaja más deprisa que la velocidad del sonido, las variaciones de presión no se pueden dispersar, por lo que permanecen en la parte delantera del avión en forma de cono. El sonido asociado a estas ondas de choque se proyecta en tierra como una bomba sónica.
El primer gran problema que encontraron los ingenieros aeronáuticos se conoce popularmente como la barrera del sonido. Se alcanza cuando la aeronave llega a la velocidad del sonido en el aire (unos 1.220 km/h al nivel del mar) conocida como Mach 1. Al obtener esa velocidad, se produce de forma brusca una modificación en la compresibilidad del aire, llamada onda de choque. El resultado de esta distorsión incrementa la resistencia al avance del avión que afecta a la sustentación del ala y a los mandos de vuelo. Por tanto, en los aviones que no estén adecuadamente diseñados, es imposible controlar el vuelo. Véase Número de Mach.
         Contaminación acústica
El ruido es un gran problema asociado con los aviones y sobre todo con el vuelo supersónico. El ruido de los motores de los aviones supersónicos es alto y más agudo que el de los subsónicos y constituye una seria molestia para los trabajadores y vecinos de las comunidades próximas a los aeropuertos. Su mayor nivel de ruido se produce cuando la onda de choque originada por un vuelo supersónico impacta el suelo, generando un fragor en forma de explosión. Este efecto se conoce con el nombre de estampido sónico y puede romper los cristales de las ventanas de las casas en zonas muy alejadas del avión que lo ha causado. Los investigadores y los fabricantes intentan reducir tanto el ruido de los motores como el estampido sónico, entre otras cosas porque les obligan las regulaciones de las autoridades aeronáuticas, que van desde prohibir el vuelo de aviones supersónicos sobre áreas pobladas, hasta establecer procedimientos, horarios y trayectorias especiales de despegue y aterrizaje, con el fin de reducir el impacto acústico de cualquier tipo de avión que opera en los aeropuertos.
         La barrera del calor
Otro de los problemas asociados con el vuelo supersónico es la alta temperatura que se produce por la fricción del aire con las superficies exteriores del aeroplano. Este problema se conoce con el nombre de barrera del calor. Para contrarrestar las altas temperaturas y presiones que origina la velocidad supersónica, los materiales de la estructura y los de la superficie deben ser más resistentes al calor y a la presión que los utilizados en los aviones subsónicos. El titanio es un ejemplo de material con gran eficiencia ante ambos efectos. La necesidad de volar cada vez a mayor velocidad y altitud, y con más autonomía de vuelo, han propiciado la aparición de nuevos diseños aerodinámicos y de modernos materiales para las estructuras del aparato.
ESTRUCTURA DEL AVIÓN
                 
         Partes de un avión
                 
Partes de un avión
Las componentes básicos de un avión son el fuselaje, las alas, el empenaje de cola, y el tren de aterrizaje. El fuselaje aloja al piloto, los pasajeros y la carga. Las alas tiene una forma especial para dar sustentación al avión. Los alerones móviles en las alas controlan el alabeo. El empenaje de cola incluye partes móviles: el timón y los alerones, que controlan el cabeceo y la dirección. La aleta y el estabilizador horizontal son fijos, y aumentan la estabilidad durante el vuelo. El tren de aterrizaje permite al avión rodar por la pista de aterrizaje durante el despegue y el aterrizaje. Los aviones ligeros y de un solo motor como éste son populares entre los pilotos privados.
Un avión de diseño actual y convencional presenta cuatro componentes: fuselaje, alas, empenaje de cola y tren de aterrizaje.
         Fuselaje
En los albores de la aviación, el fuselaje consistía en una estructura abierta que soportaba los otros componentes del avión. La parte inferior de la estructura servía de tren de aterrizaje. Después, la necesidad de aumentar la resistencia y mejorar las prestaciones llevó a desarrollar fuselajes cerrados, afianzados y sujetos por medio de montantes y cables de riostramiento, que mejoraban las condiciones aerodinámicas, proporcionaban protección a los pilotos y pasajeros y conseguían mayor espacio para el equipaje y la carga. Poco tiempo después aparecieron los fuselajes monocasco, una novedad que consistía en integrar en un solo cuerpo la estructura y su recubrimiento. Es el modelo más usado actualmente y permite presurizar el interior para volar a elevadas altitudes.
Alas
Ensamblando un avión
En esta línea de ensamblaje se están construyendo varios aviones de pasajeros de gran tamaño. En primer plano, la infraestructura del ala se une a un fuselaje. Después se ensamblan la sección de cola y los soportes de los motores.
Aunque los aviones de un solo plano o ala, conocidos como monoplanos, aparecieron pocos años después del vuelo de los hermanos estadounidenses Wilbur y Orville Wright, los primeros aeroplanos se construían preferentemente con dos alas (biplano) y en ocasiones con tres o con cuatro. Las alas múltiples tienen la ventaja de aumentar la sustentación con una estructura más fuerte, pero el monoplano encuentra menor resistencia al avance. Cuando se desarrolló el ala cantilever, el monoplano se afianzó definitivamente a pesar de que no comenzó su diseño hasta la década de los treinta. El ala cantilever consigue su fijación mediante elementos estructurales internos. Es un ala limpia desde su encastre en el fuselaje hasta su extremo, sin soporte visible alguno y se usa en la mayor parte de los aviones. Las alas reforzadas con puntales y cables aún se siguen utilizando en aviones pequeños y ligeros y en modelos acrobáticos. La estructura de un ala consiste en un armazón de largueros y costillas características cubierto por planchas metálicas unidas y sujetas al mismo por remaches u otros medios.
En los aviones pequeños el recubrimiento puede ser de lona y a veces de contrachapado o de fibra de vidrio impregnada de resina. Los largueros y costillas se extienden desde el fuselaje hasta la punta del plano. Se pueden usar uno o varios largueros, pero el diseño más corriente es el de dos. Las costillas van perpendiculares a ellos y dan al ala su forma exterior. Si el recubrimiento es de planchas metálicas, también participan del esfuerzo que soporta el ala. Este modelo de recubrimiento resistente del plano se usa en los grandes aviones, aunque cada vez se utilizan más plásticos reforzados, de alta resistencia, tanto en el recubrimiento de algunas partes del ala como en la estructura.
El tamaño y la forma de las alas varían mucho con los requerimientos aerodinámicos. Las alas de los aviones supersónicos suelen estar inclinadas hacia atrás, dando al avión el aspecto de una punta de flecha dirigida hacia adelante y muy estilizada. Esta forma permite reducir la brusca variación de compresión cuando el avión se aproxima a la velocidad del sonido. La importancia del ala dentro de la estructura del avión se pone de manifiesto con el desarrollo de las alas volantes, aviones en los que el fuselaje y la cola se han eliminado completamente.
         Empenaje de cola
El modelo normal de empenaje de cola consta de dos superficies básicas, la horizontal y la vertical. Cada una tiene secciones fijas para proporcionar estabilidad y móviles para controlar mejor el vuelo. La sección fija de la superficie horizontal se llama estabilizador horizontal y suele estar en la parte frontal, mientras que en la posterior se encuentra la parte móvil llamada timón de profundidad o elevador. Algunas veces toda la superficie se puede mover y el elevador se elimina. La parte fija de la superficie vertical es el estabilizador vertical y la móvil el timón de dirección. Hay diseños que tienen dos superficies verticales y, por tanto, dos timones de dirección. Los empenajes de cola inclinados combinan las funciones de dirección y profundidad en un solo mecanismo. En algunos aviones supersónicos, la superficie horizontal se ha sustituido por dos aletas (canard) situadas a cada lado cerca del morro del avión.
         Tren de aterrizaje
El tren de aterrizaje suele ser uno de los mecanismos más complicados de un avión. Entre sus componentes se incluye el amortiguador principal, que es una pata con una estructura muy resistente, en cuya parte inferior y antes del ensamblaje de las ruedas lleva un amortiguador hidráulico para absorber el impacto del aterrizaje. Va sujeto a los largueros del ala o del fuselaje. El mecanismo de accionamiento del tren permite extenderlo y retraerlo al accionar desde la cabina de pilotos la palanca de mando. Por lo general, se actúa con energía hidráulica. Los frenos también suelen ser hidráulicos y provistos de sistema antideslizante. Suelen llevar un mecanismo detector de modo, aire/tierra, que activa o desactiva varios sistemas del avión, según esté volando o en el suelo.
Hay varios tipos de trenes de aterrizaje, el más común es el triciclo. Consta de dos patas principales situadas detrás del centro de gravedad del avión y una tercera más pequeña en el morro. Ciertos aviones muy grandes pueden llevar tres y hasta cuatro patas principales y cuatro ruedas por cada pata. Otro modelo es el convencional con dos patas principales delante del centro de gravedad y una tercera muy pequeña situada en la parte inferior de la cola. El aterrizaje es más fácil con el tren triciclo, ya que permite un mejor frenado al no existir riesgo de golpear con el morro del avión en el suelo. También mejora la maniobrabilidad y visibilidad durante el rodaje por el suelo. Otros tipos de tren de aterrizaje pueden llevar bandas de rodadura tipo oruga para cargas pesadas en campos de aterrizaje no preparados, giratorios para viento cruzado, o una combinación de esquís y ruedas para aterrizar sobre hielo o nieve.
         CONTROLES DE VUELO
Los componentes necesarios para el control de vuelo de los aviones modernos constan de varios sistemas que se manejan desde la cabina de pilotos mediante una palanca de mando, con o sin volante, los pedales de dirección y un conjunto de instrumentos que proporcionan la información necesaria para su uso.
         Mandos de vuelo
La actitud de un aeroplano se define como su orientación relativa al horizonte y a la dirección de su movimiento. Se controla por medio de tres sistemas de mandos de vuelo, cada uno de los cuales actúa en su eje correspondiente moviendo el timón de profundidad, el de dirección o los alerones que se encuentran en la parte posterior de las alas. Todos se accionan desde la cabina de pilotos: el primero con la palanca, el segundo con los pedales, y los alerones con el volante. En los aviones pequeños, que suelen carecer de volante, la palanca que mueve el timón de profundidad, si se inclina a un lado o a otro, mueve también los alerones.
El timón de profundidad permite el movimiento de cabeceo y hace girar al avión sobre el eje transversal. Al tirar hacia atrás de la palanca de mando, se levanta el timón, disminuye su sustentación, baja la cola y, por tanto, sube el morro. Si se mueve la palanca hacia adelante se produce el efecto contrario haciendo picar al avión.
Los alerones están colocados cerca de la punta del ala y hacia el borde posterior, y permiten el movimiento de alabeo y hacen girar al avión sobre el eje longitudinal. Si se mueve el volante de mando a la izquierda o se inclina en la misma dirección la palanca cuando no hay volante, el alerón izquierdo se levanta y el derecho baja, produciéndose así una inclinación de las alas hacia la izquierda. Si se mueve el mando a la derecha, se inclinarán hacia ese lado.
Los pedales controlan el movimiento de dirección y hacen girar al avión sobre el eje vertical. En coordinación con los alerones, permiten cambiar el rumbo del avión. Cuando se presiona el pedal derecho, el timón se mueve y hace girar el avión hacia la derecha y si se empuja el pedal izquierdo, el giro será hacia la izquierda; pero hay que inclinar la palanca a la vez y hacia el mismo lado para evitar que el avión derrape. El alabeo es al avión lo que el peralte de una curva al automóvil.
Los aviones llevan un conjunto de mandos secundarios para asegurar un manejo más sencillo y efectivo de las superficies de control. Así, los compensadores se usan en el timón de profundidad, de dirección y de alabeo para ajustar el equilibrio de las superficies aerodinámicas asociadas, por tanto, los pilotos no tienen que realizar mucha fuerza sobre el mando correspondiente. Los flaps y slats aumentan la sustentación para reducir la velocidad de despegue y aterrizaje. Los spoilers, aletas alineadas con la superficie superior de las alas, se pueden extender usándolos como frenos aerodinámicos tanto en vuelo como en el aterrizaje; coordinados con los alerones, se utilizan para mejorar el control de alabeo. Los frenos aerodinámicos van en los planos; son dos o más superficies que, accionadas desde la cabina, se extienden poco a poco hasta llegar a ser perpendiculares a la dirección del vuelo, ayudando a disminuir la velocidad del avión. Todos estos sistemas se pueden controlar de diversas maneras, ya sea eléctrica, mecánica o hidráulicamente. Cuando el control se realiza mediante señales eléctricas, recibe el nombre de fly-by-wire. Si es por medio de señales ópticas, se llama fly-by-light.
Instrumentos
         Panel de control de vuelo        
Panel de control de vuelo
La cabina de un Concorde muestra la complejidad de los controles de vuelo. El equipo electrónico e informatizado de la cabina proporciona información sobre navegación, velocidad, altitud, aterrizaje, y rendimiento del motor.
La información necesaria para volar requiere datos de al menos cuatro sistemas: planta de potencia, instrumentos de vuelo, instrumentos de aterrizaje y ayudas a la navegación. Los instrumentos de la planta de potencia indican todos aquellos parámetros que permiten conocer el funcionamiento del motor, y son, entre otros: el tacómetro, que muestra las revoluciones por minuto de cada motor, los indicadores de presión y temperatura de aceite y el medidor de flujo de combustible. Los instrumentos primarios de vuelo dan información de velocidad (anemómetro), dirección (brújula magnética y giróscopo direccional), altitud (altímetros) y actitud (variómetro, bastón, bola y horizonte artificial). Varios de ellos, así como el piloto automático, utilizan datos recibidos de los giróscopos o de las plataformas inerciales, ya sean convencionales o de láser, que suministran información sin ninguna ayuda exterior.
Los instrumentos de aterrizaje necesarios para operar con baja visibilidad son de dos tipos: sistema instrumental de aterrizaje (ILS), que envía señales directas al piloto para asegurar una correcta trayectoria de aproximación, y el control de aproximación de tierra (GCA), que utiliza equipos de radar instalados en tierra para guiar al piloto mediante instrucciones verbales transmitidas por radio durante la maniobra. El ILS se usa en aviación civil y el GCA en la militar, aunque cada vez se extiende más el uso del ILS en ambas. El sistema de luces de aproximación (ALS) proporciona una ayuda visual durante los últimos metros del descenso. Véase también Aeropuerto; Ruta aérea.
         PROPULSIÓN
Hay dos sistemas de tracción que permiten volar a un aeroplano: la hélice y la propulsión a chorro. La hélice puede ser movida tanto por un motor de combustión interna como por un motor turborreactor. Debido a su diseño, empuja el aire hacia atrás con sus palas, que penetran en el aire como un tornillo. La propulsión a chorro produce el empuje al descargar los gases de escape, producto de la combustión, a una velocidad mucho mayor que la que tenía el aire al entrar en el motor. En modelos especiales se han usado motores cohete para proporcionar empuje adicional, basándose en el mismo principio de acción y reacción. Un motor de aviación tiene que satisfacer un número importante de requerimientos: alta fiabilidad, larga vida, bajo peso, bajo consumo de combustible y baja resistencia al avance. El factor más importante es el de la fiabilidad, ya que afecta de modo directo al primer requisito del transporte aéreo: la seguridad. La vida larga tiene repercusiones económicas interesantes para la aviación comercial. El peso y el bajo consumo son interdependientes, a mayor peso más consumo y más combustible a cargar que a su vez también pesa. La baja resistencia al avance se consigue reduciendo el área frontal, obteniendo con ello menos consumo.
         Motores de pistón
El motor de pistón se utiliza en los aviones propulsados por hélice. Puede ser de dos tipos: de cilindros y rotativo. En el primero, la energía mueve los pistones que trabajan dentro de cilindros colocados en línea, opuestos horizontalmente o en estrella. Para refrigerarlo se usa aire o un líquido refrigerante, y como combustible quema distintos tipos de gasolina. Su ventaja estriba en la fiabilidad y el bajo consumo. El motor rotativo sustituye los cilindros por un mecanismo rotatorio con menor número de piezas móviles, que produce, por tanto, menos vibraciones. Se utiliza para pequeños aeroplanos. El motor turboalimentado consiste en un conjunto de cilindros provisto de una turbina accionada por la energía cinética de los gases de escape. La turbina mueve a su vez un compresor que aumenta la presión de entrada del combustible en la cámara de combustión. Esto compensa en parte la pérdida debida a la altura y permite que el motor opere con suficiente potencia a grandes altitudes. Una variante de esta idea utilizaba la misma energía de los gases de escape por medio de turbinas para aplicar empuje mecánico al cigüeñal. Estos tipos de motores turboalimentados equiparon a los aviones estadounidenses e ingleses durante la II Guerra Mundial.
Motores de reacción      
Los tres tipos más comunes de motores de reacción son el turborreactor, la turbohélice y el turboventilador. El aire que entra en un motor turborreactor se comprime y pasa a la cámara de combustión. Allí el oxígeno del aire se combina con el combustible; es decir, lo quema. Los gases calientes generados hacen girar la turbina que activa el compresor, creándose un ciclo. En las turbohélices, casi toda la potencia la genera la hélice movida por la turbina, y sólo un 10% del empuje se debe a los gases del escape. Los turboventiladores combinan el chorro de gases calientes con aire propulsado por un ventilador, que también es movido por la turbina y desviado alrededor de la cámara de combustión, lo que reduce el ruido. Esta es la razón por lo que se emplea mucho en la aviación civil.
El motor de reacción se basa en el principio de acción y reacción y se divide en tres grupos: el turborreactor, el turbopropulsor y el cohete. En el turborreactor, el aire que entra en el motor pasa a través de un compresor, donde aumenta su presión. En la cámara de combustión se le añade el combustible, que se quema y aumenta la temperatura y el volumen de los gases. Los gases de la combustión pasan por la turbina, que a su vez mueve el compresor de entrada, y salen al exterior a través de la tobera de escape, diseñada para aumentar su velocidad, produciendo así el empuje deseado. Este motor puede alcanzar velocidades supersónicas. El turbopropulsor o turbohélice es un motor de reacción en el que la energía cinética de los gases de escape se usa para mover la hélice. Se instala en aviones de tamaño medio y desarrolla velocidades entre 480 y 640 km/h. Por último, el cohete es el que contiene el comburente y el combustible, y es el que impulsa los proyectiles teledirigidos. También se han usado cohetes con combustible sólido para suministrar empuje adicional durante la carrera de despegue a aviones de hélice con mucha carga. El motor turbofán es una modalidad del de propulsión a chorro en el que parte del flujo de aire, impulsado por los compresores, sale directamente al exterior produciendo empuje igual que una hélice; también se llama de doble flujo y en los motores grandes la potencia así suministrada puede superar a la del flujo primario. Lo utilizan la mayor parte de los grandes aviones comerciales, ya que consume menos combustible, hace menos ruido y es muy fiable; no puede alcanzar velocidades supersónicas, pero se aproxima a ellas. Se desarrollaron algunos otros tipos de motores de reacción, como el pulsorreactor, que impulsaba la bomba volante alemana V-1, o el estatorreactor, que necesita grandes velocidades para arrancar, usándose sólo como motor auxiliar para aviones supersónicos de velocidad superior a Mach 2. Ambos motores tienen un consumo de combustible muy alto.
AEROPLANO: TIPOS Y USOS
Los aeroplanos se pueden clasificar en tres tipos según su función y el ámbito de operación: comerciales, incluyendo los de transporte de pasajeros y carga, ya sea en líneas regulares o chárter, militares y aeroplanos de la aviación general, que son los no comprendidos en los otros dos. Las particulares características de cada avión están determinadas por la naturaleza de los servicios a realizar. El aumento de la especialización en su uso ha traído como consecuencia una amplia variación en los requerimientos de diseño.
Aeroplanos comerciales
Boeing 747 
Un avión de pasajeros Boeing 747, rodeado de andamios, está a punto de ser terminado en la fábrica. Estos aviones enormes, propulsados por cuatro motores y capaces de llevar más de 400 pasajeros, tardan en construirse más de un año.
En Europa el avión fue utilizado para transporte de pasajeros en el año 1919, mientras que en Estados Unidos los primeros vuelos de la aviación comercial se dedicaron principalmente al correo. Los vuelos de pasajeros aumentaron en rutas como la de Londres a París, se introdujeron en Estados Unidos a partir de 1927 y crecieron más deprisa gracias a la aparición de aviones seguros y confortables como el Douglas DC-3. Este avión iba propulsado por dos motores de hélice y podía transportar 21 pasajeros a una velocidad de crucero de 300 km/h. Todavía se puede ver volando por los cielos de muchos países. Poco después aparecieron los aviones cuatrimotores, que podían volar aún a mayor velocidad, subir más alto y llegar más lejos. El siguiente paso se dio en 1950, con el Vickers Viscount británico, primer avión impulsado por hélice movida por turbina de gas.
Airbus 380
El Airbus 380, cuya presentación oficial tuvo lugar en enero de 2005 en Toulouse (Francia), tiene capacidad para transportar entre 555 y 800 personas en dos cubiertas de pasajeros. Los modelos de ordenador, que van desde algunos relativamente sencillos, como el que se muestra en la imagen, a otros mucho más complejos y matemáticamente detallados, son imprescindibles para el diseño aeronáutico moderno.
Los aviones para cubrir un servicio se eligen en función de dos factores: el volumen de tráfico y la distancia entre los aeropuertos a los que sirve. La distancia entre aeropuertos se conoce como recorrido y hay un elevado número de aviones que pueden operar entre 400 y 11.000 kilómetros.
Cabina de pasajeros del Boeing 777
El Boeing 777 es un reactor de fuselaje ancho: la cabina principal de pasajeros está dividida en tres grupos de asientos por dos pasillos. En la configuración más habitual, el 777 tiene cabida para unos 315 pasajeros, pero la capacidad total depende del número de asientos destinados a cada clase: primera, preferente y turista. Esta fotografía muestra los asientos de la clase turista de un 777 típico. En el respaldo de cada asiento existe una pequeña pantalla de televisión y una bandeja plegable para el pasajero de la fila posterior.
Los reactores comerciales de pasajeros se usaron al principio para recorridos de larga distancia. El avión británico De Havilland Comet inició su servicio en 1952, y el Boeing 707 en 1958. También a finales de la década de 1950 apareció el Douglas DC-8 y los Convair 880 y 990. Estos aviones desarrollaban una velocidad de crucero aproximada de 900 km/h y transportaban más de 100 pasajeros.

DC-10
El DC-10 es un avión de tres motores que empezó a transportar pasajeros en 1971. Aunque está diseñado para vuelos más cortos que los aviones más potentes de cuatro motores, el DC-10 puede llevar más de 300 pasajeros.
El Caravelle francés, el De Havilland Trident inglés y el Boeing 727 estadounidense, todos ellos más pequeños y diseñados con los motores en la cola, se construyeron para cubrir líneas de medio recorrido, entre 800 y 2.400 kilómetros. A mediados de la década de 1960 aparecieron birreactores aún más pequeños para operar en trayectos de corto recorrido, como el Boeing 737, el DC-9, el Fokker F-28 y el BAC-111.

El DC-3 de Douglas Aircraft Company empezó a operar con pasajeros en 1936. Mostraba importantes mejoras tecnológicas frente a aviones anteriores, y muy pronto se convirtió en el avión de pasajeros más popular del mundo.
El Boeing 747 entró en servicio en el año 1970 y fue el primer avión comercial de fuselaje ancho. Sirve en trayectos de media y larga distancia y alta densidad. Utiliza motores turbofán y vuela en crucero a unos 900 km/h. Normalmente transporta 400 pasajeros, llegando hasta 500 en algunas versiones. El Douglas DC-10 y el Lockheed 1011 Tristar son también grandes aviones con capacidades próximas a los 300 pasajeros. Ambos van empujados por tres motores montados en la cola. Se diseñaron para cubrir trayectos como el de Chicago-Los Ángeles y otros de recorrido similar. El primer DC-10 voló en 1971 y el L-1011 en 1972. Mientras, en Europa, el primer avión birreactor de fuselaje ancho, Airbus A300, realizaba su primer vuelo en el mismo año.
El Airbus A310, que Airbus Industries empezó a comercializar en 1978, lo utilizan ahora compañías aéreas de todo el mundo. Es un aparato de medio o largo alcance proyectado para recorrer distancias mayores con menos pasajeros que el anterior, A300, del que se diferencia por el diseño de las alas y la cabina y por el aumento de potencia, capacidad y autonomía.
El avión supersónico comercial, o SST, constituye la cima en el desarrollo de la tecnología aeronáutica y permite cruzar el Atlántico norte y regresar de nuevo en menos tiempo de lo que un reactor subsónico tarda en hacer uno de los trayectos. El supersónico soviético TU-144, que fue el primero en entrar en servicio en 1975, realizaba vuelos regulares de carga en la URSS. En 1962 los gobiernos del Reino Unido y Francia firmaron un acuerdo para desarrollar y construir el proyecto del avión supersónico Concorde. El primer vuelo de prueba se hizo en 1971 y el certificado de aeronavegabilidad se firmó en 1975. El primer vuelo comercial del avión francés fue de París a Río de Janeiro, con escala en Dakar, y del inglés, de Londres a Bahrein.
El avión soviético TU-144 fue el primer avión supersónico comercial en entrar en servicio, en 1975.
En sus inicios, el proyecto SST fue criticado por ser antieconómico y muy ruidoso. A pesar de las objeciones, el servicio a Estados Unidos comenzó el 24 de mayo de 1976, con vuelos simultáneos de Londres y París al aeropuerto internacional Dulles, cerca de la ciudad de Washington, y a Nueva York (22 de noviembre de 1977). Excepto en los países de la antigua URSS, los vuelos SST deben realizarse a velocidades subsónicas cuando pasan por zonas habitadas.
Las pérdidas de explotación del Concorde superaron los 500 millones de libras y dejó de fabricarse en 1979. En octubre de 2003 realizó su último vuelo. A pesar del fracaso comercial del Concorde, los fabricantes y operadores están interesados en una posible segunda generación de aviones supersónicos. Entretanto hay una enorme competencia entre los fabricantes de aviones reactores subsónicos avanzados como los Boeing 757, 767 y 777 y los Airbus A320, A330 y A340. El A320 ha sido el primer avión comercial en usar el sistema de control completamente automático fly-by-wire. El avión cuatrimotor de largo recorrido A340 es el competidor del Boeing 747, mientras el bimotor de fuselaje ancho A330 y el Boeing 777 concurren en el mercado de alta densidad y medio recorrido, donde ya competían el Boeing 767 y el Airbus A300/310. En diciembre de 2000 se produjo el lanzamiento comercial del Airbus A380, el avión de pasajeros más grande del mundo; su presentación oficial tuvo lugar en enero de 2005, en Toulouse (Francia). El 27 de abril de 2005 el A380 realizó, con éxito, su primer vuelo de pruebas, de cuatro horas de duración.
Los aviones de carga han conocido una expansión sin precedentes desde la II Guerra Mundial. Los primeros aeroplanos de carga fueron los Canadair CL-44 y el Armstrong-Whitworth Argosy, a los que siguieron versiones de los grandes aviones de pasajeros modificados para carga, que son los usados actualmente.
Aeroplanos militares
Bombardero B-1 B

Bombardero B-1 B
La Fuerza Aérea de Estados Unidos firmó un contrato con Rockwell International para construir el B-1 en 1970 como bombardero estratégico tripulado. El presidente Jimmy Carter paralizó el proyecto en 1977, pero el presidente Ronald Reagan recuperó el avión con el nombre de B-1B en 1981. El B-1B tiene un ala abatible que le permite volar tanto a velocidades subsónicas como supersónicas.

Caza F-15 Eagle
Los aviones militares de caza, por lo común más pequeños y más rápidos que las aeronaves civiles de transporte, participan en combates durante las guerras y en operaciones científicas y de rescate en tiempos de paz. El 31 de marzo de 1993, el Consejo de Seguridad de las Naciones Unidas autorizó a los aviones de la Organización el Tratado del Atlántico Norte (OTAN) a patrullar los cielos durante el conflicto en Bosnia-Herzegovina. El caza F-15 Eagle, de la corporación McDonnell-Douglas, cumple esta misión.
Los aeroplanos militares se pueden dividir en cuatro categorías: combate, carga, enseñanza y observación. En la categoría de combate se incluyen los aviones de caza y los bombarderos, tanto para operaciones en tierra como en mar. Hay numerosos tipos de cada uno de estos modelos. Los cazas se usan a menudo para ataques a baja cota o para interceptaciones aéreas, siendo los más representativos de los que se usan en Europa el McDonnell Douglas F-4 Phantom, el General Dynamics F-16 y el Dassault Mirage, aunque existe un proyecto que los sustituirá por el Eurofigther. El Tornado, de geometría variable, combina las funciones de defensa aérea de largo alcance, ataque y reconocimiento, sustituyendo al antiguo BAC/Dassault Jaguar. El Harrier es un avión con capacidad de despegue y aterrizaje vertical y se usa como apoyo táctico a las operaciones en tierra y como interceptador en la lucha aeronaval. Es un avión subsónico, pero su diseño está preparado para desarrollar un modelo supersónico. Otros aviones comparables usados por Estados unidos son el McDonnell Douglas F-15 Eagle, los cazas aeronavales Grumman F-14 y McDonnell Douglas F-18, y el caza Lockheed F-117, equipado con un sistema electrónico tan sofisticado que le hace prácticamente indetectable por radar. El B-52 Stratofortress, avión subsónico desarrollado en la década de los cincuenta, y el B-1B son los principales bombarderos de largo alcance utilizados por Estados Unidos, mientras el Fairchild A-10 Thunderbolt se usa específicamente para el ataque a los carros blindados.
F-3 Tornado
F-3 Tornado
Los aviones de combate, como este F-3 Tornado de la Royal Air Force, se construyen potenciando al máximo la velocidad, la resistencia y la maniobrabilidad. Diseñado y construido por un consorcio europeo, tiene un ala abatible, que aquí se muestra en su posición de alta velocidad, plegada hacia atrás. Hay versiones distintas del avión para misiones de intercepción, ataque y reconocimiento.

Mirage IV
El Mirage IV es un avión de combate de ala delta construido por la empresa francesa Dassault-Aviation.
El más utilizado de los aviones militares de transporte es el cuatrimotor Lockheed C-130 Hércules, y el más grande el C-5A de la misma casa constructora, que puede llevar 120 toneladas de carga. Los aviones militares de enseñanza y entrenamiento más famosos han sido el Texan T-6, de hélice, para enseñanza básica, y el reactor T-33, para enseñanza avanzada. Ambos están fuera de servicio, pero han formado miles de pilotos en gran parte de los países occidentales. Un modelo muy especial de avión militar es el Boeing E3 AWACS, que gracias a sus complejos sistemas de detección se ha convertido en un eficaz observatorio aéreo para controlar todo tipo de movimientos y actividades en tierra. Se le distingue con facilidad por la enorme antena en forma de seta que lleva sobre el fuselaje.
Aviación general
Los aviones usados para recreo privado, negocios, usos agrícolas, vuelos de instrucción civil y otros servicios especiales se pueden englobar en el término de aviación general. Hay una enorme variedad de aeroplanos en esta categoría, desde los pequeños ultraligeros de un solo asiento, los de enseñanza con dos, o los más grandes con cuatro, todos con un solo motor de pistón, hasta los más complejos bimotores a reacción, capaces de realizar vuelos transatlánticos a la misma velocidad y altura que los grandes aviones comerciales.
Uno de los campos con más aplicación de la aviación general es la agricultura, donde se utilizan aviones para fumigar o para distribuir fertilizantes y simientes. También se usa para la inspección aérea de oleoductos y tendidos eléctricos, fotografía aérea, cartografía, patrullas forestales y control de la fauna salvaje.


Entradas populares